Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
نویسندگان
چکیده
Time series forecasting by fuzzy inference systems based on optimal non-uniform attractor embedding in the multidimensional delay phase space is analyzed in this paper. A near-optimal set of time lags is identified by evolutionary algorithms after the optimal dimension of the reconstructed phase space is determined by the FNN (false nearest neighbors) algorithm. The fitness function is constructed in such a any information on prediction error metrics. The weighted one-point crossover rule enables an effective identification of near-optimal sets of non-uniform time lags which are better than the globally optimal set of uniform time lags. Thus the reconstructed information on the properties of the underlying dynamical system is directly elaborated in the fuzzy prediction system. A number of numerical experiments are used to test the functionality of this method. & 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Time Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملSales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods
The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 73 شماره
صفحات -
تاریخ انتشار 2010